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is established. The random process |Zn}n>0 is given by Zn = <P(Xn) + {„,
n = 0, 1,2,..., where { X n } n > 0 and {En} n^o are independent random sequences:
the former is a stationary process defined by Xa = T n ( X 0 ) , X0 is uniformly dis-
tributed on the circle S1, T: S1 -* S1 is a continuous, uniquely ergodic transfor-
mation preserving the Lebesgue measure on S 1 , a n d [ f , n } n > 0 is a random
sequence of independent and identically distributed random variables on 5'; <t>
is a continuous real function. The LDP at level 1 for the means Mn is obtained
by using the level 2 LDP for the Markov process { Vn = ( X n , <Jn , {„n+1)}n>0

and the contraction principle. For establishing this level 2 LDP, one can con-
sider a more general setting: T: [0, 1) j -»[0, 1) is a measure-preserving Lebesgue
measure, 0: [0, 1) -»IR is a real measurable function, and <;„ are independent
and identically distributed random variables on R (for instance, they could have
a Gaussian distribution with mean zero and variance a2). The analogous result
for the case of autocovariance of order k is also true.
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A large-deviation principle (LDP) at level 1 for random means of the type
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1. INTRODUCTION

Given a probability space (Q, F, P) and a measurable transformation
T: Q -»Q, we say that T is measure preserving if

We say that T is uniquely ergodic if there exists only one invariant measure
for T, in the sense of (1.1).

We will parametrize points y = exp {2nix\ in the circle S1 by
x e [0, 1] and we shall identify x and y according to the convenience. In the
sequel we will consider T: S1 -> S1 a continuous map. With this identifica-
tion on mind, we point out that the main motivation of this paper came
from Time Series Analysis. In that context, the process

where T: [0, 1] -> [0, 1) is a continuous, measure preserving transforma-
tion and Tn is the composition of T, n times, is called signal process.

One of the examples of transformations we are interested in is T
defined by

where a is irrational. It is well known that this transformation preserves the
Lebesgue measure X on ([0, 1), B([0, 1))), where B ( A ) is the Borel a-field
of subsets of A; moreover, T is uniquely ergodic (Durrett, 1996). For this
example, the process {Xn}n>0 in (1.2) is stationary if and only if X0 is
uniformly distributed on [0, 1). We observe that this process may be
viewed as a Markov process with transition function p(x,A) = S A ( T ( x ) ) ,
AeB([0,l)) ,

having the Lebesgue measure on [0, 1) as its unique stationary distribu-
tion. Other examples of uniquely ergodic transformations appear in Lopes
and Rocha (1994), Coelho et al. (1994), and Lopes and Lopes (1995,
1996).

Let <£ be any continuous real function on S1 and {£„}n>0 a sequence
of independent and identically distributed random variables in the circle S1,
common distribution n, and independent of {Xn}n>0. We define



where Zn is defined in (1.4) with T: [0, 1) -»[0, 1) being a continuous,
uniquely ergodic transformation preserving the Lebesgue measure A (or a
measure absolutely continuous with respect to the Lebesgue measure). For
simplifying the exposition we shall assume that T preserves the Lebesgue
measure. We refer the reader to Lopes and Lopes (1995, 1996) for the
motivation of analyzing such process and where all results at level 2 LDP
considered here are applied. The strategy we shall follow consists in firstly
to get a level 2 LDP for the process

2. STATEMENT OF THE MAIN RESULTS

In what follows we introduce notations, definitions, and we state the
main results of this paper.
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When 0(x) = cos(2nx) and T is given by (1.3), the process Zn is called the
harmonic model.

The main goal in this paper is to establish a level 1 large-deviation
principle (LDP) for the random means

and then, using the Contraction Principle (see Ellis, 1985), to obtain the
level 1 LDP for (1.5).

The level 2 LDP is considered in Sections 3 and 4. The assumptions
on K«}n»o and T may be weakened in this case: the random variables £„,
n^O, may not have compact support (the random variable £,„ can be
Gaussian distributed) and the transformation T can be discontinuous.
In Section 5 we obtain the level 1 LDP for (1.5) when £,„ has compact sup-
port. In Section 6 we make some remarks about special situations and
extension results. In Remark 6.5 we point out that similar results are also
valid for the autocovariance of order k, that is, for sums of the form

The level 1 LDP for the random means Mn as in (1.5) is not true when
£„ is a Gaussian distributed random variable.



where Vj(w) = (Xj, ej, £ j + 1 ) ( w ) = wi for all weQ. Moreover, the above
convergence holds Pv-a.s., VveS (see Doob, 1953).

Let M1(S) be the space of probability measures on B ( S ) ; it is a Polish
space (complete, separable metric space) if we impose on it the weak
topology (which is compatible with the Levy metric) (see Appendix in
Dembo and Zeitouni, 1993). For measures in M 1 ( S ) we shall introduce
some definitions. By writing S = Sl x S2 x S3, for ie {1, 2, 3} let n, be the
projection of S onto S,, and ntj be the projection of S onto SjXSj, for
i, j e {1, 2, 3}, defined by n i ( s 1 , s 2 , s 3 ) = siand n y ( s 1 , s2, s3) = ( s i , S j ) . If v is
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The random process { Vn}n>0 in (1.6) is a Markov process with phase
space S= [0, 1) x [R2 and transition function

where the random variables E 1 ,E 2 , . . are independent and identically dis-
tributed with common distribution n on R.

It is worth to remark that, given a Markov process with phase space
S, transition function II, and initial distribution u, the Kolmogorov Exist-
ence theorem (see Billingsley, 1995) allows one to construct a measure Pu
on sequence space ( S N , a ( ^ ) ) so that the sequence Yn(w) = wn, w e SN, has
the same distribution as the original Markov process.

From now on, let us assume Q = SN as being the space of sequences
of elements of S, a(^} be the <r-field generated by the cylinder sets, and Pu
the probability measure on (Q, a(^)) given by

VA0, • • • , A n e B ( S ) , where u is a (initial) distribution on (S, B ( S ) ) . If
y"( •) = Sv( .). for v e S, the above measure is denoted by Pv and the corre-
sponding expectation by Ev.

If rj is the distribution of £„, it is not difficult to see that the product
measure i x r j x t j on (S, B ( S ) ) is the unique stationary distribution for the
Markov process { V n } n > 0 (in the sense that the only initial distribution
that makes { V n } n > 0 a stationary process is Ax 7 7 x 7 7 ) . By the ergodic
theorem (see Durrett, 1996), for any A x 77 x 77-integrable function g,
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a measure in Jt^(S), then define a probability measure n,v on ^ (S i ) by
requiring that, for each i e {1, 2, 3},

The measure niv is called the i-dimensional marginal of v. Similarly, define
KyV as the probability measure on B(Si x Sj), for each i, je {1, 2, 3}, given
by

The measure nijv is called the (i, j)-dimensional marginal of v. We also
define, for each ve M 1 ( S ) , a new measure vT-1 in M 1 ( S ) by requiring

for all measurable rectangle A x B x C.
Let us introduce the empirical means

w e S N , n=1,2,.... Clearly, for each weSN, L n ( w , . ) M 1 ( S ) . Moreover,
Ln is (rC^J-measurable:

The distribution of Ln on B ( M 1 S ) ) is Q n , u ( . ) given by

where u is a distribution on ( S , B ( S ) ) . In particular, if u(.) = S v ( . ) , for
v € S, we shall use the notation Qn,v( .).

Since

it follows from (2.3) that



if I x t j x r j ^ A , A e £ % B ( S ) ) , where A is the closure of A. Hence, the
sequence { Q n - v ( . ) : n = 1,2,...} converges weakly, when n goes to infinity,
to the unit point measure S X x ^ x ^ on , M 1 ( S ) . We shall show that the
sequence In obeys a LDP at level 2 (see Ellis, 1985), with the entropy
function 7(v), ve ,M1(S) (this statement is equivalent to that the family
{Qn, v ( - ) : n ^ \ } obeys a LDP with entropy function I(v)) .

In Sections 3 and 4 we prove that I(v) is given by
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and then

where

and

We may say that

is the conditional density of n3v/nl2v, with respect to the measure n.
Now we state the main result in this paper (the level 2 LDP) which

will be proved in Sections 3 and 4.

Theorem 2.1. For I ( v ) given in (2.6) and for any (x, y,z)eS,

(a) Lower Bound: for all open set G c M 1 ( S ) ,



(c) Compactness of the Level Sets: V.y>0, { v e M 1 ( S ) : I(v) s£.v} is a
compact set in the weak topology.

A corollary (see Theorem 4.3.1 in Dembo and Zeitouni, 1993) of this
theorem is that if V is a bounded real-valued weakly continuous functional
on M1(S) then

we prove that I (v ) in (2.11) coincides with 7(v) in (2.6) and then we show
that { Q n , v ( - ) ' - n ^ \ } obeys a Weak Large-Deviation Principle with
entropy function I(v) (i.e., Theorem 2.1 is valid but the upper bound holds
only for compact subsets of M1(S)). To extend the upper bound to closed
sets, it is enough that { Q n , v ( - ) ' . n ~ & \ } be exponentially tight, which is
proved in Lemma 4.1 of Section 4. If the distribution of £,„ has compact
support then M1(S} is compact which implies that the Weak LDP is in fact
the LDP for the process.

It is important to observe that the functional I ( • ) in (2.11) is lower
semicontinuous in the weak topology of M 1 ( S ) and convex. Moreover,
I ( v ) = 0 if and only if v is the invariant measure of 77 (see Lemma 2.5 in
Donsker and Varadhan, 1975a).
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(b) Upper Bound: for all closed set F < = M 1 ( S ) ,

To prove Theorem 2.1 we use the same approach of Donsker and
Varadhan (1975a): starting with the functional

with 77 defined in (2.1) and

where



3. LEVEL 2 LARGE DEVIATIONS: LOWER BOUND

The goal here is to prove part (a) of Theorem 2.1. For proving it we
need some lemmas.

First we consider the random process {A'n}n>0 introduced in (1.2);
it can be seen as a Markov process with transition function p(x,A) =
SA(T(x}), x e [ 0 , 1 ) . Throughout this section and Section 4 T is not
assumed to be a continuous transformation and the support of the random
variables £„ is not compact, necessarily. As T is uniquely ergodic and
preserves the Lebesgue measure, the uniform distribution on [0,1) is the
unique stationary measure for the process Xn = <j>» T".

Let
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Now, returning to the means (1.5) , we have

If g :S->R is defined by

we may write

Assuming that T is continuous and the distribution q has compact support
(which is true if the random variables £„ have distribution on S1), the func-
tion g is continuous and bounded. Therefore, the operator $: M^(S] —»(R,
such that g(v) = \s g(v} v(dv), is weakly continuous. Using the Contraction
Principle (see Ellis, 1985), the LDP at level 1 for (1 .5) is obtained taking
into account (2.15): the level 1 entropy function I z ( . ) is given by

where /(•) is the level 2 entropy function for { Q n , v ( . ) ' . n > 1 } . In this way
the LDP at level 1 follows from the LDP at level 2.



where m1 2(x , y) is given in (2.8) and ,M0 is the set introduced in (2.7).
Moreover,
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The ergodic theorem says that

where A is the Lebesgue measure on [0,1).
Let Q(1)(?!,!*(.) be the distribution of L(1)I(x, •) on B(M1([0, 1 ) ) ) . Notice

that, once the initial point x is fixed, the process {Xn}n>0 is deterministic
as well as L(1)\x, •). The next lemma follows from this observation.

Lemma 3.1. (a) For all open set G cM1([0, 1)),

and (b) for all closed set F cM1([0, 1)),

where the entropy function at level 2 I ( 1 ) ( v ) for the process {Xn}n>0 is
given by

Secondly, we consider the Markov process { V n } n > 0 introduced in
(1.6). Its transition function II is given in (2.1) and its phase space is
S = [0, 1) x R2. Let I(.) be the entropy function defined in (2.11).

Lemma 3.2. I ( v ) < + c o if and only if veM0 and the density
m(x, y, z) of v with respect to A x xn xn satisfies

otherwise



Taking into account that nl2v = n13vT -1 ', we have m 1 2 ( x , y ) =
m 1 3 ( T - 1 ( x ) , y). Let

then I ( v ) < l , I(.) being the functional in (2.11).
Recall that the marginal density of nvv is m1(x) = 1, for all xe [0, 1),

so that, for each xe [0, 1), m(x, y, z) is a probability density (with respect
to nxn) of some measure nx on ^([R2). For each xe [0, 1), let us define
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Proof. Suppose that veM0 and that (3.1) holds. Let

and

Since n l 3 v T - 1 ( A x B) = 7 i l 3 v ( T - 1 ( A ) x B),for all A e B ( [ 0 , 1)), B e @ ( R ) ,
and T is L-preserving, we get

By hypothesis, /< +00. Notice that, for l/eW,

So, if we show that, for all ^eW,



A x = { ( y , z ) e R 2 : m ( x , y, z)>0}. Clearly nx(Ax) = 1. Let B x = { y e R :
m1 2(x, y) >0}. Since the first marginal u(1) of ̂ x has density m 1 2 ( x , y ) with
respect to rj, u ( 1 ) ( B x ) = 1 which means that

But, for each (x, y)e [0, l)x IR with m12(x, y)>0, m(x, y , z ) / m 1 2 ( x , y) is a
density with respect to r\ for some probability measure on B(R). Using Jen-
sen's inequality in the first integral on the right hand side of the last
equality (this is possible if one substitutes Ax by Bxx R), we obtain
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Hence, [ i x ( B x x K ) = \ and we may identify Ax with B x x R , in terms of
integration. Then,

Since nl2v = n^13T-1 and A = /i T-1, we may write

and we get (3.3).



Now suppose that I (v ) < +00. Let /(v) = / for v e M 1 ( S ) . Then,
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From Lusin's theorem (see Rudin, 1974), (3.4) also holds for all non-
negative measurable functions on S, bounded away from zero and infinity.
We denote this set by W*.

Let ij/eW* be defined by p ( x , y, z) = ij/l(x) \l/2(y) ^3(2), where i/f, is
any continuous function with \j/i(x)>0, Vxe [0, 1), i /^=1 and

where k> 1 and A e 3 $ ( R ) . For such \j/, (3.4) implies that

Suppose that n^v^L From Lemma 3.1, we know that for all M>0,
there exists a positive continuous function \l/t on [0,1) such that

So, we may choose M, [j/l, and k in such a way that (3.5) implies that

which is a contradiction, if M is large enough. Therefore, nlv = L
Now take \l/(x, y, z) = i/>,(.x) \ji2(y) \j/3(z) with
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Hence (3.4) implies that, for k > 1,

where A 1 EB([0 ,1)) , A 2 e B ( U ) , and 1^3 = 1. Notice that

By making k -» oo, we get

from what follows the equality of measures nl2v and n \^vT - 1 ', if one takes
the complement of the set.

To show that v«^xijxr] first we show that n l 3 v T - 1 « A XT;.
Choose \l/eW* such that i/»(x, y, z) = \j/l(x, z) ty2(y}> ^2=1, and for
A e B ( [ 0 , l ) x R ) ,

By Jensen's inequality and (3.4) we get

Since A = T-1 ', the last inequality implies that

If ( A x ? / ) ( A ) = 0 we have

Hence, 7i1 3v«/lx?/. Consequently, n l 3 vT - 1 « A X ? / since

and we conclude that
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Using this fact and that T is L-preserving, (3.4) may be written as

where A e B ( S ) . Jensen's inequality and (3.6) imply that

Finally, for having v « / l x ? / x ? / it suffices that v«7ii3vT - 1 lxq. To
prove this last statement, choose \l/ e W * as

from what we conclude, by taking k -» + oo, that v « n l 3vT - 1 x rj.
It remains to show that (3.1) holds. By defining

and following the same arguments as in the proof of Lemma 2.1 in
Donsker and Varadhan (1975a), we get (3.1). In what follows we outline
the main steps.

From the Dominated Convergence theorem,

But I(v) = l< +00 implies that (3.6) holds for all ijjei^ and then from
Lusin's theorem it also holds for \ l / e W . Hence, for \l> = un and using Jen-
sen's inequality, we get from (3.6),



for obtaining the above inequality we also used the fact that n^vT - 1 =
p12v. Since m(x, y, z) is a probability density with respect to / ( x r j x r ; , it
follows from (3.7) and (3.8) that

which is (3.1). Moreover,
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By the Monotone Convergence Theorem

and then (3.9) implies that

Hence

From the whole proof we also conclude that, if I ( v ) < +00 then

so we have (3.2); besides, (2.11) and (3.2) are equal. |

For proving the lower bound (2.9) in Theorem 2.1 we shall consider
a new Markov process with transition function II absolutely continuous
with respect to 77.

Let us introduce the set



Proof. This lemma can be proved as Lemma 2.9 in Donsker and
Varadhan (1975a) so we omit it. |

Lemmas (3.2)-(3.4) allow one to prove the lower bound (2.9) by using
the same arguments as in Donsker and Varadhan (1975a). In what follows,
we outline the main steps of the proof.

Proof of the Lower Bound. Let v e M2 and, for simplifying the
notation,
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Let v be in M2 with density m(x, y, z). Define

with 77 as in (2.1).

Lemma 3.3. Under the above conditions, v is the only invariant
measure for IT.

Proof. Clearly I ( v ) < + o o which implies, from Lemma 3.2, that
veM 0 . It is not difficult to show that

for any measurable rectangle A 1 * A 2 x A 3 . |

Lemma 3.4. Let G be an open subset of M1(S) . Then

where m is the density of v with respect to A x r; x rj. Then I (v ) = \s Wdv.
Let S(v; e) be the sphere with center v of radius £>0, in the weak

topology on M 1 ( S ) . Define £ „ _ „ _ „ = {w : Ln(w, - ) e S ( v ; E)}. One may show
that



where P'u is the probability measure in Q = SN induced by the transition
function H ' ( v , d u ) defined in (3.10).

For each e' > 0, define

Now, let G be an open subset of M1(S) and take v e G n M 2 . Since G
is an open set, there exists e>0 such that S(v;e)<=G. By using the last
inequality and Lemma 3.4 we get (2.9). |

4. LEVEL 2 LARGE DEVIATIONS: UPPER BOUND

Following the same ideas as in Donsker and Varadhan (1975a), one
can prove the upper bound in (2.10) for compact sets. Since the measure
t] has not compact support, , M 1 ( S ) is not a compact set. So, the inequality
for closed sets does not follow as a consequence.

Proof of the Upper Bound. Let i ^ e / / , u = II, and e~*'=ijj/u.
Notice that W = In Uijj — In \l> is bounded and continuous. From the
Markov property it follows that
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Then

By Lemma 3.3, v is the unique invariant measure for U'. From the
ergodic theorem (see Doob, 1953),

so that, Ve > 0, Ve' > 0,

Hence,



for some constant M > 0. This inequality may be written as
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where Vn = (Xn, £„, £„ + 1) as before. Then

where n e M 1 ( S ) is the integration variable.
First, take Fc.M1(S) as being any measurable set. From the above

inequality we get

and then

Up to now, (2.10) holds for compact sets F. Therefore, {Qn,v ( . ) : n > 1}
satisfies a weak LDP with rate function I/(.) given in (2.11). But Lemma 4.1,
to be proved below, tells us that this family of measures is exponentially
tight, so (2.10) holds for closed sets F as well (see Lemma 1.2.18 in Dembo
and Zeitouni, 1993). |

Relying on Lemma 1.2.18 in Dembo and Zeitouni (1993), since the
lower bound in (2.9) holds for all open sets and the family of measures

Now, if F is a compact set it can be shown (see Donsker and
Varadhan, 1975b) that the expression on the right hand side of the above
inequality is equal to

Secondly, for any Fez (JK
j=1 F,, for F, measurable sets,



where ( K n ) n > 0 is the random process in (2.6) and Ln(w, .) is defined in
(2.4). Besides'

where E e"><*•>••" is the expectation corresponding to the measure Qn(x,y,z

For each 6 > 0, define
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{Qn. v( •) : N>1} is exponentially tight, then I(.) in (3.2) is a good rate func-
tion, that is, the level sets {v : I(v) <s} are compact in the weak topology.
Moreover, this property is carried out to the rate function I z ( . ) for the
process Mn in (1.5).

Lemma 4.1. The family of measures {Qn (x, y , z ) ( . ) : n > 1} is
exponentially tight.

Proof. We shall prove that V L > l , there exists a compact set
CLc[0, l ) x R 2 such that

For each i/' e W and t > 0 define the functional

Then

Using (4 .1) , we get
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Choose { K m } as a sequence of compact subsets of R for which
t}(Kcm)->0 as w-> +00. Define Km = [ 0 , 1 ) x K2m, m > l . Clearly Km is a
compact subset of S and

Let us introduce the functions i/'m = ^jkm, m>1, and the sets

Then, by using (4.2),

where E is the expectation corresponding to the independent and identi-
cally distributed random process £„, £„ = y and £, = z with probability one.

One can see that

where z0 = y and z1 = z. Since

we get, for any 0 < c < 1 and for m large enough such that zeKm,
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Now, for each t > 0 we choose m so large that

This is possible because SCKc (•) converges to zero as m goes to infinity in
n-measure. Besides, 0 < e < 1 being arbitrary, we choose e so small that
ete < 2. Hence, for m large enough and depending on t, I1, ^ 3n.

Similarly, there exists m sufficiently large and depending on t such that
I2 < 3" and I3 < 3n. Therefore, V? > 0, 3m = mt, > 0 such that I1 + I2 + I3 ^ 9"
which implies by (4.3) that

Let L>1. For l^L, take 6=1/1 and t = 3/(l + ln 9 + 1). Then, by
writing mt = m1

Let

This set is relatively compact. By Prohorov's theorem (see Appendix of
Dembo and Zeitouni, 1993, page 319), CL is compact in M1(S). Since

we get, from (4.4),

5. LEVEL 1 LARGE DEVIATIONS

In this section we assume that T is a continuous transformation and
t] has compact support.

The rate function that governs large deviations for the means



In particular, if £„ has zero mean, then

In Sections 3 and 4 of this paper we established a full LDP for the
family of distributions Qn , ( X , y , z )( .) of Ln(w, .). Taking into account (2.15)
and using the Contraction Principle (see Ellis, 1985), the entropy function
for { M n } n > 1 is given by

where I(.) is the level 2 entropy function for the process { Vn]n>0. Clearly
Iz(r) = 0 if and only if r = \s g(v)(lxrjxr/)(dv) because 7(i>) = 0 if and
only if v = 1x77x77 . If £„ has zero mean then Iz(r) = 0 if and only if
r = J[(0,1)*(«)0(7W)<du3.
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introduced in (1.5) is obtained by using the level 2 large deviations for
{Vn}n>0 i n ( 1 . 6 ) .

Since Zj = <I>(Xj) + fj we have

lf g:S->R is defined by

and taking into account (2.15) the ergodic theorem implies that



may be studied similarly to what was done in Sections 3 and 4. One can
prove that its entropy function is given by

with m(x, y) = (dv/(dr] x rj))(x, y) and m1(x) = } R m ( x , y) r(dy).

Remark 6.2. Let Yn = (Xn, £„), n>0, and consider the empirical
measures

Large deviations for the family of distributions of the above empirical
measures is governed by the entropy function
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6. SOME REMARKS

Remark 6.1. Large deviations for the empirical pair measures

where

otherwise,

where

This result may be obtained similarly to Sections 3 and 4 of this paper.
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Remark 6.3. One can generalize level 2 large deviations by con-
sidering the empirical pair measures corresponding to Yn = (Xn, £„), « ^0.
Let

Clearly, for each weS N , L n ( w , - ) e M 1 ( S ) , where S=[0, l ) 2 x R 2 .
The ergodic theorem implies that

where L is a measure on B([0, 1)2) defined by

For each v e M 1 ( S ) , we define the measure vT-1 eJi^S) by

for any measurable rectangle.
Let us define

If veM 0 , let m(x,y,z,t) be the density of v with respect to A x 7 7 x 7 ; ,
m123(x, y, z) be the marginal density of nl23 v with respect to I x r j and
m124(x, y, t) be the marginal density of nl24v with respect to I x t j . The
definition of n l24vT -1 tells us that

Moreover, from the condition n123v = n124vT-1 , we have



One can prove, as in Sections 3 and 4 of this paper, that the level 2
large deviations for L n ( w , . ) in (6.1) is governed by the entropy function
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Remark 6.4. Returning to the process { V n } n
> 0 in (1.6), let us

define

where E,, is the expectation corresponding to the measure Pv on
(S N , cr(tf)), introduced in (2.2). Let B(S: R) be the set of bounded
measurable real functions.

Let

By Lemma 4.1.36 in Deuschel and Stroock (1989), A*(v) = I(v), v e M 1 ( S ) ,
where I(v) is defined in (2.11).

Remark 6.5. The results for random means { M n } n > 1 in (1.5) may
be extended to

When {Zn}n>0 has zero mean they are called the autocovariances of order
k of the process Zn.

The level 1 LDP for the random means (6.2) follows from the level 1
LDP for the corresponding autocovariances of order 1, in (1.5). To see
this, let us consider first the case k = 2. One can verify that the process
{Mn}n>2 in (6.2) has the same distribution as the process

where



Hence, the level 1 entropy function for a ( 1 ) M ( 1 ) + a(2) M(2) is given by
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{Yn}n>0 and { W n } n > 0 are independent random sequences with the same
distribution as the process {Zn}n>0 given by (1.5), with T2 instead of T,
since T2 is a uniquely ergodic transformation, where T is given by (1.1).
The sequences { a ( 1 ) } n > 1 and { a ( 2 ) } n > 1 are real sequences converging to 5
as n goes to infinity.

Since {a ( ^ } n > 1 and { a ( 2 ) } n > 1 are deterministic sequences their
entropy function is

The level 1 entropy functions for M ( 1 ) and M(2) are equal and coincide
with Iz(r) in (5.1).

Relying on the independence of the sequences a(1) a (2 ) M(1)\ M(2)

and using the Contraction Principle (see Dembo and Zeitouni, 1993), we
obtain the level 1 entropy function for a(1)M(1) (which is the same for
«(2)M1(2)):

Similarly, for each k> 1, the level 1 entropy function for {Mn}n>k in (6.2)
is
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